
© Redwood EDA

Steve Hoover
Founder, Redwood EDA

Dec. 15, 2020

Transaction-Level Verilog
and its Ecosystem

© Redwood EDA

Agenda

● Makerchip demo
● The role of abstraction in ASIC/FPGA design
● Hands-on learning

○ Combinational logic

○ Sequential logic

○ Pipelines

● Wrap-up

2

© Redwood EDA

Makerchip.com

3

© Redwood EDA

RTL

4

Year Processor Clock Transistors HDL

1985 i386 ? ? Verilog
(to verify)

2017 32-core AMD
Epyc

? ? Verilog

© Redwood EDA

RTL

5

Year Processor Clock Transistors HDL

1985 i386 33MHz ? Verilog
(to verify)

2017 32-core AMD
Epyc

3.2GHz
(~100x)

? Verilog

© Redwood EDA

RTL

6

Year Processor Clock Transistors HDL

1985 i386 33MHz 275K Verilog
(to verify)

2017 32-core AMD
Epyc

3.2GHz
(~100x)

19.2B
(>70,000x)

Verilog

© Redwood EDA

Abstraction Levels

7

Behavioral Spec. (e.g. ISA)

Transaction Level

Register Transfer Level

Gate Level

Device Level

© Redwood EDA

Abstraction Levels

8

Behavioral Spec. (e.g. ISA)

Transaction Level

Register Transfer Level

Gate Level

Device Level

© Redwood EDA

Verif

RTL Design Methodology

Gates

Func Perf
Power Spec

Mem
Protocol

ISA

ChkAsserts Cov.
XactorsViz

RTL

© Redwood EDA

Verif

Transaction-Level Design Methodology

Gates

Func Perf
Power Spec

Mem
Protocol

ISA

ChkAsserts Cov.
XactorsViz

TL

RTL

© Redwood EDA

Alternate Directions

EDA Industry:
C++-Based HLS

● Integrate w/ C++-
based verification

● Synthesize
algorithms to
gate-level RTL

● Target multiple
platforms (s/w, GPU,
FPGA, etc.)

Designers: TL-X
(TL-Verilog)

● H/w modeling (w/
HLS) deserves its
own language

● Abstraction as
context for details
(if details are
needed)

11

Academia: DSLs
(Chisel, CλaSH, ...)

● Leverage s/w
techniques to
construct h/w

© Redwood EDA

Reproduce this screenshot:

1. Open:
barc.makerchip.com.

2. Click “IDE”.
3. Open “Tutorials” “Validity

Tutorial”.
4. In tutorial, click:

5. Split panes and move
tabs.

Lab: Makerchip Platform

12

Load Pythagorean Example 7. Zoom/pan in Diagram w/ mouse wheel
and drag.

8. Zoom Waveform w/ “Zoom In” button.
9. Click $bb_sq to highlight.

http://makerchip.com

© Redwood EDA

A) Inverter

1. Open “Examples” (under
“Tutorials”).

2. Load “Default Template”.
3. Make an inverter.

In place of:

type:

(Preserve 3-space indentation)

4. Compile (“E” menu) & Explore

Lab: Combinational Logic

13

 $out = ! $in1;

Note:

1. There was no need to declare $out
and $in1 (unlike Verilog).

2. There was no need to assign $in1.
Random stimulus is provided, and a
warning is produced.

B) Other logic

1. Make a 2-input gate.
(Boolean operators: (&&, ||, ^))

 //...

© Redwood EDA

Lab: Vectors

$out[4:0] creates a “vector” of 5 bits.

Arithmetic operators operate on vectors as binary numbers.

14

1. Try:
$out[4:0] = $in1[3:0] + $in2[3:0];

2. View Waveform (values are in hexadecimal)

© Redwood EDA

Sequential Logic - Fibonacci Series

Next value is sum of previous two: 1, 1, 2, 3, 5, 8, 13, ...

15

+ 235 1 1

$num

© Redwood EDA

Fibonacci Series - Reset

Next value is sum of previous two: 1, 1, 2, 3, 5, 8, 13, ...

$num1

+

$reset

16(makerchip.com/sandbox/0/0wjhLP)

$num[31:0] = $reset ? 1 : (>>1$num + >>2$num);

>>1$num >>2$num

© Redwood EDA

Lab: Counter

Lab:

1. Design a free-running
counter:

2. Compile and explore.

$num1

+

$reset

17

Reference Example: Fibonacci Sequence (1,
1, 2, 3, 5, 8, ...)

\TLV
 $num[31:0] = $reset ? 1 : (>>1$num + >>2$num);

(makerchip.com/sandbox/0/0wjhLP)

3-space indentation
(no tabs)

$cnt[15:0]
0

+

$reset

1

© Redwood EDA

A Simple Pipeline

a

b
c

c = sqrt(a^2 + b^2)

Let’s compute Pythagoras's Theorem in hardware.
We distribute the calculation over three cycles.

+

^2

^2

sqrt
c

a

b

18

© Redwood EDA

A Simple Pipeline - Timing-Abstract

|calc

2 3Stage: 1

+

^2

^2

sqrt
c

a

b

➔ Flip-flops and
staged signals are
implied from
context.

19

Timing-abstract:

+

^2

^2

sqrt
c

a

b

RTL:

© Redwood EDA

A Simple Pipeline - TL-Verilog

20

|calc

2 3Stage: 1

+

^2

^2

sqrt
$cc

$aa

$bb

|calc
 @1
 $aa_sq[31:0] = $aa * $aa;
 $bb_sq[31:0] = $bb * $bb;
 @2
 $cc_sq[31:0] = $aa_sq + $bb_sq;
 @3
 $cc[31:0] = sqrt($cc_sq);

TL-Verilog

© Redwood EDA

SystemVerilog vs. TL-Verilog

21

// Calc Pipeline
logic [31:0] a_C1;
logic [31:0] b_C1;
logic [31:0] a_sq_C1,
 a_sq_C2;
logic [31:0] b_sq_C1,
 b_sq_C2;
logic [31:0] c_sq_C2,
 c_sq_C3;
logic [31:0] c_C3;
always_ff @(posedge clk) a_sq_C2 <= a_sq_C1;
always_ff @(posedge clk) b_sq_C2 <= b_sq_C1;
always_ff @(posedge clk) c_sq_C3 <= c_sq_C2;
// Stage 1
assign a_sq_C1 = a_C1 * a_C1;
assign b_sq_C1 = b_C1 * b_C1;
// Stage 2
assign c_sq_C2 = a_sq_C2 + b_sq_C2;
// Stage 3
assign c_C3 = sqrt(c_sq_C3);

System
Verilog

|calc
 @1
 $aa_sq[31:0] = $aa * $aa;
 $bb_sq[31:0] = $bb * $bb;
 @2
 $cc_sq[31:0] = $aa_sq + $bb_sq;
 @3
 $cc[31:0] = sqrt($cc_sq);

TL-Verilog
~3.5x

|calc

+

^2

^2

sqrt
c

a

b

© Redwood EDA

Retiming -- Easy and Safe

|calc
 @1
 $aa_sq[31:0] = $aa * $aa;
 $bb_sq[31:0] = $bb * $bb;
 @2
 $cc_sq[31:0] = $aa_sq + $bb_sq;
 @3
 $cc[31:0] = sqrt($cc_sq);

|calc
 @0
 $aa_sq[31:0] = $aa * $aa;
 @1
 $bb_sq[31:0] = $bb * $bb;
 @2
 $cc_sq[31:0] = $aa_sq + $bb_sq;
 @4
 $cc[31:0] = sqrt($cc_sq);

$aa_sq
$cc_sq

|calc

2 31

+

^2

$bb_sq sqrt
$cc

$aa

$bb

40

^2

==

Staging is a physical attribute. No impact to behavior.

$aa_sq
$cc_sq

|calc

2 31

+

^2

$bb_sq sqrt
$cc

$aa

$bb

40

^2

22

© Redwood EDA

Retiming in SystemVerilog

23

// Calc Pipeline
logic [31:0] a_C1;
logic [31:0] b_C1;
logic [31:0] a_sq_C0,
 a_sq_C1,
 a_sq_C2;
logic [31:0] b_sq_C1,
 b_sq_C2;
logic [31:0] c_sq_C2,
 c_sq_C3,
 c_sq_C4;
logic [31:0] c_C3;
always_ff @(posedge clk) a_sq_C2 <= a_sq_C1;
always_ff @(posedge clk) b_sq_C2 <= b_sq_C1;
always_ff @(posedge clk) c_sq_C3 <= c_sq_C2;
always_ff @(posedge clk) c_sq_C4 <= c_sq_C3;
// Stage 1
assign a_sq_C1 = a_C1 * a_C1;
assign b_sq_C1 = b_C1 * b_C1;
// Stage 2
assign c_sq_C2 = a_sq_C2 + b_sq_C2;
// Stage 3
assign c_C3 = sqrt(c_sq_C3);

Very bug-prone!

© Redwood EDA

Lab: Pipeline

See if you can produce this:

24

Error conditions
(leave unassigned)

ORs

|calc
 @1
 $aa_sq[31:0] = $aa * $aa;
 $bb_sq[31:0] = $bb * $bb;
 @2
 $cc_sq[31:0] = $aa_sq + $bb_sq;
 @3
 $cc[31:0] = sqrt($cc_sq);

(for reference)
which ORs together (||) various error
conditions that can occur within a
computation pipeline.
(And keep this open.)

© Redwood EDA

Validity

|calc
 @1
 $valid = ...;
 ?$valid
 @1
 $aa_sq[31:0] = $aa * $aa;
 $bb_sq[31:0] = $bb * $bb;
 @2
 $cc_sq[31:0] = $aa_sq + $bb_sq;
 @3
 $cc[31:0] = sqrt($cc_sq);

Validity provides:

● Easier debug
● Cleaner design
● Better error checking
● Automated clock gating

25

© Redwood EDA

Clock Gating

● Motivation:
○ Clock signals are distributed to EVERY flip-flop.
○ Clocks toggle twice per cycle.
○ This consumes power.

● Clock gating avoids toggling clock signals.

● FPGAs generally use very coarse clock gating + clock enables.

● TL-Verilog can produce fine-grained gating or enables.
26

+

^2

^2

sqrt
c

a

b

© Redwood EDA

Validity

\TLV
 |comp
 ?$valid
 @1
 $err1 = $bad_input | $illegal_op;
 @3
 $err2 = $err1 | $over_flow;
 @6
 $err3 = $err2 | $div_by_zero;

27

Try this on your error logic.

(Use Ctrl-] to indent a block of selected code.)

Observe the diagram and waveform.

© Redwood EDA

Awesomeness We Don’t Have Time For

● Pipeline interactions

● State

● Hierarchy

● Transaction flows

● Modularity and reuse

● Hardware construction

28

© Redwood EDA

Training

29

● TL-V RISC-V Workshops in March:
○ Hobbyists: RISC-V International/Linux Foundation
○ Students: MYTH Workshop
○ Professionals: IEEE

● Makerchip tutorials
● Other videos, slides, articles, papers, etc:

redwoodeda.com/publications

https://www.vlsisystemdesign.com/riscv-based-myth/
https://www.redwoodeda.com/publications

© Redwood EDA

Open-Source TL-Verilog Projects

30

FractalValley.net

Flexible RISC-V CPU
Hardware-Accelerated

Web Applications

Cloud FPGAs

Visual Debug

https://github.com/alessandrocomodi/fpga-webserver
https://github.com/stevehoover/warp-v
http://fractalvalley.net/
http://fractalvalley.net/
https://opensource.googleblog.com/2019/09/unleashing-open-source-silicon.html

