Transaction-Level Verilog
and its Ecosystem

~/
, Steve Hoover
I edwood Founder, Redwood EDA
EDA Dec. 15,2020
© Redwood EDA

Agenda

e Makerchip demo
e Therole of abstraction in ASIC/FPGA design

e Hands-on learning

o Combinational logic
o Sequential logic
o Pipelines

e Wrap-up

© Redwood EDA

Makerchip.com

N\
m@ip peta PROJECT~ TUTORIALS~ HELP~ SOCIAL ~ SAVE AS NEW PROJECT

TUTORIAL-VALID %

Lab 1 - Makerchip Platform

COURSE SLIDES % QY DIAGRAM M

Reproduce this screensho

1. Open “Tutorials”
“Validity Tutorial”.
2. Intutorial, click

(Load Pythagorean Example
3. Split panes (@) and
move tabs.
4. Zoom/pan in Diagrar
w/ mouse wheel and
drag.

Last updated 10 T

ZOOM IN ZOOM ouT ZOOM FULL

// [+] ?Svalid

17 @1 7/ [>>>] L :

18 Saa_sq[7:0] = Saal[3:0] ** 2; /7 [>>>] @%ragg;ﬁig

19 $bb_sq[7:0] = $bb[3:0] ** 2; /7 [>>>] e

20 @2 /7 [>>>] @1%aa_sq oo |

21 $cc_sq[8:0] = Saa_sq + $bbesg @1$bb [—

22 @3

T

@2$cc sq [oss]

Year | Processor Clock Transistors | HDL
1985 | i386 ? ? Verilog
(to verify)
32-core AMD | 7 ? Verilog

4 2017

Epyc

© Redwood EDA

Year | Processor Clock Transistors | HDL
1985 | i386 33MHz | 7 Verilog
(to verify)
32-core AMD | 3.2GHz | 7 Verilog

Epyc (~100x)

© Redwood EDA

Year | Processor Clock Transistors | HDL
1985 | i386 33MHz | 275K Verilog
(to verify)
32-core AMD | 3.2GHz | 19.2B Verilog
Epyc (~100x) | (>70,000x)

© Redwood EDA

Abstraction Levels

Behavioral Spec. (e.g. ISA)

Transaction Level
Register Transfer Level
Gate Level

Device Level

© Redwood EDA

Abstraction Levels

Behavioral Spec. (e.g. ISA)

Transaction Level

Register Transfer Level
Gate Level

Device Level

© Redwood EDA

RTL Design Methodology

Mem _ISA
Viz Xactors

TL

Asserts

© Redwood EDA

Transaction-Level Desigh Methodology

-

<V
Xactors

Asserts Chk' ,

N

© Redwood EDA

Alternate Directions

EDA Industry: Academia: DSLs Designers: TL-X
C++-Based HLS (Chisel, CAaSH, ...) (TL-Verilog)
e Integrate w/ C++- e Leverages/w e H/w modeling (w/
based verification techniques to HLS) deserves its
e Synthesize construct h/w own language
algorithms to e Abstraction as
gate-level RTL ® 44 context for details
e Target multiple (if details are
platforms (s/w, GPU, N needed)
FPGA, etc.)

% =

© Redwood EDA

1

Lab: Makerchip Platform

PROJECT ~ TUTORIALS ~ HELP~ SOCIAL ~ SAVE AS NEW PROJECT

Reproduce this screenshot:

EDITOR | v NAV-TLV (Y - DIAGRAM
14 // DUT (Design Under Test)
15

16 // [+] ?Svalid

. 17 @1 /7 [>

1' Open' 18 Saa_sq[7:0] = Saa[3:0] ** 2; /7 [>
. 19 $bb_sq[7:8] = Sbb[3:0] ** 2; /7 [>

20 @2 /7 [>

barc.makerchip.com. . e

22 @3 /7 [>

* Last updated 21 minutes ago g
B

TUTORIAL-VALID x

M « »
2. Click“IDE". 23 scol4:0] = sar
A
1
{4 M I » ((V I'd M
3. Open “Tutorials” “Validity
INFORM(©) (PROD_INFO):
.) SandPiper(TM) 1.9-2018/02/11-beta from Redwood EDA . 1 Tl
Tutorlal (DEV) Run as: "java -jar /src/sandpiper.jar --ide --lic
° For help, including product info, run with -h.

4. Intutorial, click:
Compile xkfBvVz TLV Exit Code: -

_ 7. Zoom/panin Diagram w/ mouse wheel

and drag.
8. Zoom Waveform w/ “Zoom In” button.
9. Click $bb_sq to highlight.

© Redwood EDA

INFORM(®) (LICENSE):

5. Split panes (g@gpnd move
tabs.

12

http://makerchip.com

Lab: Combinational Logic

A) Inverter Note:
1. Open “Examples” (under 1. There was no need to declare $out
“Tutorials”). and $in1 (unlike Verilog).
2. Load “Default Template”. 2. There was no need to assign $in1.
3. Make aninverter. Random stimulus is provided, and a
In place of: warning is produced.
//...
type:
B) Other logic
Sout = ! $inl; .
1. Make a 2-input gate.

(Preserve 3-space indentation) (Boolean operators: (&&, ||, *))

4. Compile (“E” menu) & Explore

13
© Redwood EDA

Lab: Vectors

sout[4:0] creates a“vector” of 5 bits.

Arithmetic operators operate on vectors as binary numbers.

1. Try:
Sout[4:0] = $inl[3:0] + $in2[3:0];

2. View Waveform (values are in hexadecimal)

14
© Redwood EDA

Sequential Logic - Fibonacci Series

Next value is sum of previoustwo: 1,1, 2, 3,5, 8, 13, ...

$num

—
A

15

© Redwood EDA

Fibonacci Series - Reset

Next value is sum of previoustwo: 1,1, 2, 3,5, 8, 13, ...

Sreset

1 Snum

>>1$num >>2S8num

—
A

$num[31:0] = Sreset ? 1 : (>>1%$num + >>2%num) ;

(makerchip.com/sandbox/0/0wjhLP) 16
© Redwood EDA

Lab: Counter

Lab: Reference Example: Fibonacci Sequence (1,
1,2,3,5,8,..)
1. Designafree-running $reset
counter:
1 $num
Sreset E
1 $cnt[15:0]
\TLV

$num[31:0] = Sreset ? 1 : (>>1%$num + >>2$%num) ;

\

3-space indentation
(no tabs)

© Redwood EDA

(makerchip.com/sandbox/0/0wjhLP) 17

A Simple Pipeline

Let’s compute Pythagoras's Theorem in hardware.
We distribute the calculation over three cycles.

Mb T

a b —»| 22

)

c=sqrt(a®2+b"2)

© Redwood EDA

3

sqrt

18

A Simple Pipeline - Timing-Abstract

RTL:
a —»| "2 A
C
sqrt P>
b =+ "2 |a
Timing-abstract:
|calc | I
a A2 '
I I C
I I sqrt >
b "2 |
i i
Stage: 1 1 2 ! 3

© Redwood EDA

—

Flip-flops and
staged signals are
implied from
context.

19

A Simple Pipeline - TL-Verilog

TL-Verilog

I I
i : chl

3 A9 | $aa_sq[31:0] = $aa * $aa;
| | $ $bb_sq[31:0] = $bb * $bb;
I + 7 sqrt P> @2

b "2 | $cc_sq[31:0] = $aa_sq + $bb_sqg;
. " @3

Stage' 1 : 2 I 3 $cc[31:0] = sqrt(Scc_sq);

20
© Redwood EDA

SystemVerilog vs. TL-Verilog

I : System // Calc Pipeline
- I Verilog logic [31:0] a_C1;
2 I logic [31:0] b C1;
| sqrt | logic [31:0] a_sq C1,
a sq C2;
I logic [31:0] b_sq C1,
I I b sq C2;
logic [31:0] c_sq C2,
c_sq _C3;
logic [31:0] c_C3;
always ff @ (posedge clk) a sq C2 <= a_sq Cl;
always ff @ (posedge clk) b sq C2 <= b _sq Cl;
always ff @ (posedge clk) c_sq C3 <= c_sq C2;
Q1 // Stage 1
$aa_sq[31:0] = $aa * Saa; assign a sq C1 =a CL * a Cl;
$bb sq[31:0] $bb * $bb,' assign b_Sq_Cl = b_Cl * b_Cl,'
Q2 - // Stage 2
$cc sq[31:0] $aa sq + $bb sq; assign c_sq C2
Q3 - - - // Stage 3
assign c¢_C3 = sqrt(c_sq C3);

L-Verilog

a sq C2 + b sq C2;

$cc[31:0] = sqrt(Scc_sq);
. © Redwood EDA

21

Retiming -- Easy and Safe

el |calc I I | |
$aa sq[31:0] = $aa * Saa; I
$bb_sq[31:0] = $bb * $bb; $ |
82 sqrt e
$cc_sq[31:0] = $aa_sq + $bb_sqg; $ |
@3
. = . | I | |
$cc[31:0] sqgrt ($cc_sq) ; o ' 1 ' 5 ' 3 ' 4
Qo
$aa_sq[31:0] = $aa * Saa; |calc
(Chil $
$bb_sq[31:0] = $bb * $bb; 72 c
Q2 sgrt
$cc_sq[31:0] = $aa sq + $bb _sq; $
Q4]] | |
$cc[31:0] = sqrt(Scc_sq); 0 . 1 . 2 . 3 . 4
AN
E Staging is a physical attribute. No impact to behavior. 29

© Redwood EDA

Retiming in SystemVerilog

// Calc Pipeline
logic [31:0] a C1;
logic [31:0] b C1;
logic [31:0] a_sq CO,
a sq C1,
a sq C2;
logic [31:0] b_sq C1,
b sq C2; |
logic [31:0] c sgq C2, ougo
caqca, Very BUG—FR
c_sq C4;
logic [31:0] c_C3;
always ff @ (posedge clk) a sq C2 <= a _sq Cl;
always ff @ (posedge clk) b sq C2 <= b sq Cl;
always ff Q@ (posedge clk) c sq C3 <= c sq C2;
always ff @ (posedge clk) c _sq C4 <= c_sq C3;
// Stage 1
assign a sq Cl = a Cl * a Cl1;
assign b sq C1 = b C1 * b C1;
// Stage 2
assign ¢ _ sq C2 = a_sq C2 + b sq C2;
// Stage 3

assign ¢ C3 = sqrt(c sq C3); 23

Lab: Pipeline

See if you can produce this:

Error conditions
O (leave unassigned)

Sbad_
inpuc
Sillegal_
0p=

.] (for reference)

which ORs together (| |) various error e1

. . . $aa_sq[31:0] = $aa * $aa;
conditions that can occur within a . $bb_sq[31:0] = $bb * $bb;
computation pipeline. $cc_sq[31:0] = $aa_sq + $bb_sq;

@3
(And keep this open.) Scc[31:0] = sqrt(Scc sq) ; »
© Redwood EDA

@1l
$valid = ...;
?8valid
@l
$aa_sq[31:0]
$bb_sq[31:0]
@2
$cc_sq[31:0]
@3
$CC [31 : 0] =

$aa * $aa;
$bb * S$bb;

$aa_sq + $bb_sq;

THIIE

Validity provides:

Easier debug

Cleaner design

Better error checking
Automated clock gating

25

Clock Gating

a —p| A2 A
+ A sgrt —C>
b —»| 22 A
-
Motivation: B
o Clock signals are distributed to EVERY flip-flop.
o Clocks toggle twice per cycle. S Ay Oy

o This consumes power.
Clock gating avoids toggling clock signals.
FPGAs generally use very coarse clock gating + clock enables.

TL-Verilog can produce fine-grained gating or enables.

26
© Redwood EDA

Try this on your error logic.

\TLV
?8valid

@1
$errl = $bad input | $illegal op;

@3
$err2 = Serrl | $over flow;

@6
$err3 = $err2 | $div_by zero;

/

(Use Ctrl-] to indent a block of selected code.)

Observe the diagram and waveform.

27
© Redwood EDA

Awesomeness We Don’'t Have Time For

e Pipelineinteractions
e State

e Hierarchy

e Transaction flows

e Modularity and reuse

e Hardware construction

28
© Redwood EDA

TL-V RISC-V Workshops in March:

o Hobbyists: RISC-V International/Linux Foundation
o Students: MYTH Workshop

o Professionals: IEEE
Makerchip tutorials
Other videos, slides, articles, papers, etc:
redwoodeda.com/publications

© Redwood EDA

29

https://www.vlsisystemdesign.com/riscv-based-myth/
https://www.redwoodeda.com/publications

Open-Source TL-Verilog Projects

W o - 1

Flexible RISC-V CPU

Cloud FPGAs Hardware-Accelerated
Web Applications

| . m =

: | a- El
Visual Debug

| H| = =

| TR = -

30

© Redwood EDA

https://github.com/alessandrocomodi/fpga-webserver
https://github.com/stevehoover/warp-v
http://fractalvalley.net/
http://fractalvalley.net/
https://opensource.googleblog.com/2019/09/unleashing-open-source-silicon.html

